

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics			
QUALIFICATION CODE: 07BAMS		LEVEL: 7	
COURSE CODE: CAN702S		COURSE NAME: COMPLEX ANALYSIS	
SESSION:	NOVEMBER 2022	PAPER: THEORY	
DURATION:	3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
DR. NEGA CHERE		
PROF. FORTU <i>NE'</i> MASSAMBA		

INSTRUCTIONS		
1.	Answer ALL the questions in the booklet provided.	
2.	Show clearly all the steps used in the calculations.	
3.	All written work must be done in blue or black ink and sketches must	
	be done in pencil.	

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [19]

1.1. Express
$$z = \frac{1+i}{3+i}$$
 in the form of $a + ib$ and then find its modules. [5]

1.2. Use exponential form to express
$$(1-i)^{98}$$
 in the form of a + i b. [9]

1.3. Find the argument and the principal argument of
$$z = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$
. [5]

QUESTION 2 [8]

Find the image of the triangle with vertices $z_1 = -2 + i$ and $z_2 = 2 + 2i$ and $z_3 = -2 + i$ under the mapping w = f(z) = (2 + i)z - 2i. Skitch the triangles.

QUESTION 3 [24]

3.1. Verify the Cauchy-Riemann equations for
$$f(z) = iz^2 + z$$
. [10]

3.2. Show that
$$f(z) = e^{-z}$$
 is analytic using the Cauchy-Riemann equations. [14]

QUESTION 4 [16]

Verify that $u(x, y) = x^3 - 3xy^2 + 3x^2 - 3y^2$ is harmonic, and find its harmonic conjugate v(x, y). If f(z) = u(x, y) + i(x, y), with f(0) = i, find f(z).

QUESTION 5 [15]

Compute the following integrals.

5.1.
$$\int_0^{\frac{\pi}{4}} te^{it} dt$$
. [7]

5.2.
$$\int_C (z^2 - \overline{z}^2) dz$$
 where $C: z(t) = t^2 + it$, $0 \le t \le 1$. [8]

QUESTION 6 [18]

Evaluate the following integrals

6.1. $\int_{C} \frac{\sin \pi z \, dz}{z^2 + 1}$ where C is the positively oriented contour shown in the figure below. [11]

6.2. $\int_C \frac{1}{z^3(z+3i)} dz$ where C is the circle |z-i|=1 is oriented positively.

[7]

END OF FIRST OPPORTUNITY EXAMINATION QUESTION PAPER